Deformations of a Matched Pair and Schreier Type Theorems for Bicrossed Product of Groups

نویسنده

  • A. L. AGORE
چکیده

We prove that the bicrossed product of two groups is a quotient of the pushout of two semidirect products. A matched pair of groups (H,G,α, β) is deformed using a combinatorial datum (σ, v, r) consisting of an automorphism σ of H , a permutation v of the set G and a transition map r : G → H in order to obtain a new matched pair `

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras

For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h n (k∗ × AutLie(h)). In the non-perfect case the classification of these Lie algebras is a difficult task. Let l(2n + 1, k) be the Lie algebra with the bracket [Ei, G] = Ei, [G,Fi] = Fi, ...

متن کامل

Some common fixed point theorems for Gregus type mappings

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair of self maps of Gregustype in the framework of convex metric spaces have been obtained. Also, established the existence of common fixed points for a pair of compatible mappings of type (B) and consequently for compatible mappings of type (A). The proved results generalize and extend some of the w...

متن کامل

M ar 2 00 7 FACTORIZATION PROBLEMS FOR FINITE GROUPS

We investigate two questions about bicrossed products of finite groups which we believe have the potential of being approachable for other classes of algebraic objects. The first one is the problem of classifying groups which can be written as bicrossed products of two groups of fixed isomorphism types and the second is the problem of classifying the groups which cannot be obtained as bicrossed...

متن کامل

COUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES

In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.  

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009